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On the Nonextensivity of the Long Range X-Y Model
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It will be given analytical and numerical evidence supporting that the X-Y
model yields an extensive, i.e., proportional to the number of degrees of
freedom N, internal energy U for any value of the interaction range.
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The X-Y is a well known model of Statistical Mechanics. It is defined by a
set of conjugate pairs of variables (hi, pi)i=1,..., N, N being the number of
degrees of freedom, with a Hamiltonian (kinetic, K, plus potential, V)
function
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In this expression rij is the distance between the sites (i, j) of a regular
lattice of dimensionality d and lattice spacing equal to one. For example, in
the linear case that will be analyzed in detail later, d=1, it is rij=|i − j|.
Periodic boundary conditions are assumed, and it is understood the con-
vention of minimal distance between sites i and j. The constant o sets the
interaction strength. The definition is such that, for ferromagnetic coupling
o \ 0 (the only one considered in this paper) the minimum value of the
energy is equal to zero.

The parameter a sets the interaction range and its variation allows to
recover some limits of interest. For example, the case a=., for which



r−a
ij =0 unless rij=1, is the nearest neighbor version, whereas the opposite

limit, a=0, is a mean field Hamiltonian in which all sites interact equally.
This mean field limit is usually studied (1) under the condition that the
interaction strength is of order N−1, i.e., by setting o=E/N with E=O(1).
It is known that in this case the model exhibits a phase transition from
an ordered to a disordered phase at a critical value bc=2/E. This result
follows (2) from an analysis of the partition function
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at inverse temperature b=1/kBT, as usual.
The model has received recently some attention (3) for a value of the

interaction strength o=O(1) as an example of a non-extensive system. It
has been argued (4) that in this case the internal energy U=OHP, as well as
other thermodynamical potentials, should scale as U ’ N2 − a/d for a < d
(the so-called nonextensive regime), whereas for a > d, the extensive regime
U ’ N is recovered.

In this paper, I will present arguments showing that the internal
energy is an extensive function U(N, T)=Nu(T) for any value of a. The
result is based upon an exact calculation of the partition function in the
mean-field limit a=0 as well as some numerical simulations.

Let me first sketch the proof for a=0. Introducing the total ‘‘spin
vector’’ MF=; i mF i with mF i=(cos hi, sin hi) it is possible to write the
potential energy as V=o

2 (N2 − M2). Using this relation and the Hubbard–
Stratonovich transformation, one arrives at the following expression for
the partition function: (5)
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where ZK=(2p
b )

N
2 and ZV are, respectively, the kinetic and potential con-

tributions and In(y) is the modified Bessel function of order n. The stan-
dard calculation (2) assumes that o=O(1/N) and finds the dominant saddle
point contribution to the above integral in the limit N Q .. A similar cal-
culation can be carried out assuming that o=O(1). In this case, the loca-
tion of the saddle point y0, given as the solution of
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can be solved in the limit N Q ., giving y0=Nbo
2 − 1

2+O(N−1). The result-
ing partition function is:
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It turns out that the Helmholtz free energy F=−kBT ln Z is not an
extensive function since it contains terms of order N ln N. However, these
terms disappear when computing the internal energy U=−“ ln Z

“b . This yields
U=(N+1)/b. In the thermodynamic limit the dominant term is:

U=
N
b

(6)

showing that the internal energy is indeed an extensive function of the
number of degrees of freedom. Note that the kinetic and potential terms
in the Hamiltonian contribute equally, OKP=OVP=N

2b , to the internal
energy.

The nearest neighbor interaction, equivalent to the limit a=., has
been studied in refs. 6 and 7 for the linear lattice d=1. It is found that the
internal energy is again an extensive function, namely:

U=N 5 1
2b

+o 11 −
I1(bo)
I0(bo)

26 (7)

Therefore, since the limits a=0 and a=. both yield an extensive internal
energy, it is natural to speculate that a similar behavior will hold for any
value of the parameter a. In order to check this result I have performed
standard Monte Carlo simulations using the Metropolis et al. algorithm (8)

of the one dimensional system given in (1) for several values of a including
a=0, 0.5, . and a value of the coupling strength o=1. Whereas the limit-
ing cases a=0, . serve only for the purposes of checking that the numeri-
cal simulations do reproduce the theoretical results, the intermediate value
a=0.5 can not be compared with any a priori theoretical calculation.

Figure 1 plots the internal and potential energies rescaled by the
number of degrees of freedom, U/N and V/N respectively, as a function of
the inverse temperature b, for a=0.5. Although not shown, for lack of
space, similar results are obtained for other values of a. This figure shows
that the data for all values of N collapse in a single curve, thus proving the
extensive nature of the internal and potential energies. Note that there is
not much quantitative difference between the values of the energies corre-
sponding to the limiting cases a=0 and a=..
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Fig. 1. Internal U (upper set of points) and potential V (lower set) energies rescaled by the
number of degrees of freedom N for a=0.5 and coupling strength o=1. The symbols are the
result of the Monte Carlo simulations. Circles, diamonds and triangles correspond, respec-
tively to N=50, 100, 200. It is observed a very good collapse of the data for all values of N
showing the extensive character of the internal energy. For comparison, the theoretical pre-
dictions for a=0, Eq. (6), solid line, and a=., Eq. (7), dotted line, are also included.

As other authors have found, (3, 9) it is also possible to map the results
of the X-Y model with o=O(1) to the same model with o=O(1/N) if
one allows to rescale the temperature T by the number of degrees of
freedom N. In this way it is possible to achieve a sort of non-extensive
regime in which U(N, T)=N2u(T/N) (for a=0). The results of this
paper, however, concern the true thermodynamic limit, N Q ., while
keeping T=O(1). I have shown that this limit yields an extensive internal
energy and that this extensive behavior can be recovered by simple Monte
Carlo simulations. It is interesting to remark that the same extensive
behavior will be found in microcanonical simulations. In fact, it is possible
to compute the density of states g(E) for the potential part of the Hamil-
tonian as the inverse Laplace transform of the partition function ZV. (10)

This gives:

log(g(E))
N

=
1
2

log 1 E
N2

2+c (8)

where c is a constant of order one. As shown in Fig. 2, this result is fully
consistent with a numerical calculation of the density of states (11) which
predicted empirically a form g(E)=eNf(E/N2). Within this microcanonical
ensemble, the internal (potential) energy is found by using b=“ ln g(E)

“E or
E=N/2b, the same result we obtain before for the average potential
energy OVP.
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Fig. 2. Density of states g(E) for the potential part of the X-Y Hamiltonian in the case
a=0. The solid line is the theoretical prediction Eq. (8), with a constant c=2.54, while the
dots are the result of a numerical calculation (11) of the same quantity. Please note that in
reference (11) the data were plotted using base 10 logarithms instead of the natural logarithms
used here.

The existence of this extensive regime can be considered surprising at
first sight, since the interaction terms are very strong. From the mathemat-
ical point of view, the extensive regime is due to the continuous nature of
the excitations of the ground state of the Hamiltonian (1). A similar analy-
sis for the long range Ising model in which the spins can only vary by an
integer amount, yields that, for a=0, the internal energy scales again as
U=N2u(T/N) but in the true thermodynamic limit, the system is always
in the ordered phase and U=0. In the X-Y model with long range interac-
tions and o=O(1) there is no phase transition at any finite value of the
temperature in the thermodynamic limit, and the system is always in an
ordered situation. In fact, the order parameter is M=O(N) for all values
of the temperature.

In summary, it has been given analytical and numerical evidence that
the internal energy derived from the X-Y Hamiltonian is an extensive
function of the number of degrees of freedom, U(N, T)=Nu(T), for any
value of the parameter a setting the interaction range. Other thermody-
namic potentials, such as the Helmholtz free energy, contain terms of the
order N log N. Non extensive regimes require to scale the temperature
with N.
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